روش تکراری شکاف هرمیتی وهرمیتی کج برای حل معادلات ماتریسی خطی

پایان نامه
چکیده

روشی که در این پایان نامه بر روی آن بحث می کنیم یک روش تکراری دو مرحله ای است که برای اولین بار توسط بای وهمکارانش در سال ( 2003 ) ابداع شد. این روش برای حل دستگاه معادلات خطی معین مثبت غیر هرمیتی استفاده می شود همچنین بای و همکارانش ر.ش تکراری شکاف نرمال وهرمیتی کج را ارائه کردند.فصل اول پایان نامه به تعاریف، قضایا و معرفی روش در فصل دوم به مروری بر روش تکراری می پردازیم. در فصل سوم روش تکراری hss را برای حل معادلات ماتریسی بکار می بریم و در فصل چهارم روش تکراری nss را معرفی نموده و برای حل معادلات ماتریسی بکار می بریم. و بالاخره با اثبات چند قضیه خواص و ویژگی های همگرایی روش را بررسی میکنیم

منابع مشابه

روشهای تکراری جدید مبتنی بر شکاف هرمیتی و هرمیتی اریب برای حل معادلات ماتریسی خطی

‏در‎ این رساله دو روش مبتنی بر شکاف هرمیتی و هرمیتی اریب برای حل معادلات ماتریسی خطی به شکل ‎$‎‎‎axb=c‎$‎‏ و ‎$‎‎‎ax+xb=c‎$‎‏ ارائه می شوند. در هر یک از این روشها با به کار بردن تکرارهای تو در تو‏، ابتدا در هر تکرار داخلی یک معادله ماتریسی را حل کرده و جواب این معادله داخلی را به عنوان ‎‏تقریبی از جواب معادله اصلی در نظر گرفته و تکرارهای بیرونی را تا رسیدن به جواب معادله ادامه می دهیم. ‎روش اول...

روشهای تکراری شکافت هرمیتی و هرمیتی – کج برای حل دستگاه معادلات غیر خطی

چکیده فارسی روشهای تکراری شکافت هرمیتی و هرمیتی – کج برای حل دستگاه معادلات غیر خطی رضا رخ فروز کیسمی روش شکافت هرمیتی و هرمیتی-کج hss)) که توسط بای و همکارانش ارائه شده است یک روش تکراری کارا برای حل دستگاه معادلات خطی معین مثبت تنک می باشد . اخیرا بای و همکارانش با ترکیب کردن این روش و روش نیوتن روشی به نام newton-hss را برای حل دستگاه معادلات غیر خطی تنک با ماتریس ژاکوبی معین مثبت ارائه ک...

15 صفحه اول

روش تکراری شکاف نرمال و هرمیتی اریب و تعمیم های آن برای حل دستگاه معادلات خطی

دستگاه ax=b را در نظربگیرید که در آن a یک ماتریس تنک بزرگ و معین مثبت غیر هرمیتی است. هدف از انجام این پایان نامه معرفی روش تکراری شکاف نرمال و هرمیتی اریب و بیان تعمیم های آن است که مبتنی بر ایجاد یک شکاف نرمال و هرمیتی اریب در ماتریس ضرایب می باشد. روش تکراری hss که مبتنی بر ایجاد شکاف هرمیتی و هرمیتی اریب در ماتریس ضرایب است اولین بار در سال 2002 برای حل دستگاههای خطی غیر هرمیتی و معین مثبت...

15 صفحه اول

روش های شکافت هرمیتی - هرمیتی کج برای حل دستگاه معادلات خطی معین مثبت غیرهرمیتی

حل بسیاری از مسایل کاربردی در علوم ومهندسی منجر به حل دستگاه معادلات خطی ax=b می گردد که ماتریس a معمولا یک ماتریس بزرگ است. حل این دستگاه با استفاده از روش های مستقیم مقرون به صرفه نبوده و بعضا غیر ممکن است. امروزه از روش های تکراری برای حل این گونه دستگاه ها استفاده می شود. روش های تکراری مختلفی برای حل عددی این دستگاه وجود دارد که با توجه به خواص ماتریس ضرایب دستگاه، می توان آن ها را به کار ...

روش های شکافت هرمیتی-هرمیتی کج اصلاح شده برای حل دستگاه معادلات خطی معین مثبت غیرهرمیتی

بسیاری از مسائل در علوم و مهندسی منجر به حل دستگاه معادلات خطی ax=b می شوند که در آن a یک ماتریس تنک معین مثبت غیرهرمیتی با ابعاد بزرگ است. همانطور که می دانیم روش های تکراری شکافت هرمیتی و هرمیتی کج (hss) و نسخه تقریبی آن (ihss) برای حل این گونه دستگاهها بسیار مناسب هستند. لی و همکارانش در سال 2007 روشهای تکراری hssیک طرفه(lhss)و نسخه تقریبی آن(ilhss) را ارائه نمودند. در این پایان نامه روش های...

15 صفحه اول

یک روش تکراری برای حل معادلات ماتریسی خطی

در این پایان نامه ابتدا به معرفی معادله سیلوستر پرداخته و دو روش مستقیم برای حل آن ارائه می دهیم. در فصل سوم یک روش تکراری کارآمد را برای حل معادله ماتریسی خطی a(x)=e، با ماتریس حقیقی x معرفی می کنیم. می توان با استفاده از این روش تکراری حل پذیر بودن معادله ماتریسی خطی را به طور خودکار تعیین نمود. زمانی که معادله ماتریسی سازگار است، می توان برای هر ماتریس اولیهx_0، جوابی را در تعداد تکرار متناه...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023